Direkt zum Inhalt
Kontakt
Teilen

Kontakt

Sie haben Fragen, Wünsche oder Anregungen?
Kontaktieren Sie uns, wir helfen Ihnen gerne weiter.

News 08.02.2019

Software-Tool gegen Fake News

Fraunhofer FKIE nutzt Machine Learning zur Identifizierung von Falschmeldungen und Desinformationen

Falschmeldungen werden zur Stimmungsmache oder Hetze gegen einzelne oder mehrere Personen genutzt. Sie sollen die öffentliche Meinung zu bestimmten aktuellen Themen beeinflussen und manipulieren. Diese Fake News verbreiten sich rasant über das Internet, vor allem über Soziale Medien wie Facebook und Twitter. Sie zu identifizieren ist schwierig. Hier setzt ein Klassifikationstool des Fraunhofer-Instituts für Kommunikation, Informationsverarbeitung und Ergonomie FKIE an. Es wertet Informationen aus Social-Media-Beiträgen automatisiert aus. Das System erschließt große Datenmengen. Es bewertet nicht nur Texte, sondern bezieht auch Metadaten in die Analyse ein und bereitet die Ergebnisse grafisch auf.

„Mit unserer Software fokussieren wir uns auf Twitter und Webseiten. In den Tweets werden die Links veröffentlicht, unter denen die eigentlichen Fake News zu finden sind. Die sozialen Medien liefern sozusagen den Trigger. Die eigentlichen Falschmeldungen finden sich häufig auf Webseiten, die denen von Nachrichtenagenturen nachempfunden und nur schwer von den Originalen zu unterscheiden sind. Oftmals liegen ihnen DPA-Meldungen zugrunde, die sprachlich verändert wurden“, erläutert Prof. Dr. Ulrich Schade vom Fraunhofer FKIE, dessen Forschungsgruppe das Tool entwickelt hat.

Im ersten Schritt bauen Schade und sein Team Bibliotheken mit seriösen Beispielbeiträgen auf sowie mit solchen Texten, die der Nutzer als Fake News klassifiziert. Mithilfe dieser Lernsets wird das System trainiert. Um Falschmeldungen herauszufiltern, wenden die Forscherinnen und Forscher Machine-Learning-Verfahren an, die automatisiert nach bestimmten Merkmalen in den Texten und den Metadaten suchen. Das können beispielsweise in einem politischen Kontext auf semantischer Ebene Formulierungen und Wortkombinationen sein, die sich weder im alltäglichen Sprachgebrauch noch in der journalistischen Berichterstattung finden. Zu den Merkmalen zählen auch sprachliche Fehler; falsche Gedankenstriche, Orthografie-, Deklinations- oder Satzbaufehler aber auch Meta-Daten.

Letztere spielen eine wichtige Rolle, wenn es darum geht, richtige von falschen Meldungen zu unterscheiden: Wie häufig wird gepostet, wann wird ein Tweet abgesetzt und um welche Uhrzeit. Aufschlussreich ist der Zeitpunkt eines Posts. 

Weitere Informationen finden Sie hier.

Bleiben Sie informiert über die Vielfalt der digitalen Transformation in NRW.

Jetzt Wissensvorsprung sichern